Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 10: 1223825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146499

RESUMEN

Introduction: Articular cartilage injuries are a severe problem, and the treatments for these injuries are complex. The present study investigates a treatment for full-thickness cartilage defects called Autologous Chondral Platelet Rich Plasma Matrix Implantation (PACI) in a sheep model. Methods: Chondral defects 8 mm in diameter were surgically induced in the medial femoral condyles of both stifles in eight healthy sheep. Right stifles were treated with PACI and an intraarticular injection with a plasma rich in growth factors (PRGF) solution [treatment group (TRT)], while an intraarticular injection of Ringer's lactate solution was administered in left stifles [Control group (CT)]. The limbs' function was objectively assessed with a force platform to obtain the symmetry index, comparing both groups. After 9 and 18 months, the lesions were macroscopically evaluated using the International Cartilage Repair Society and Goebel scales. Results: Regarding the symmetry index, the TRT group obtained results similar to those of healthy limbs at 9 and 18 months after treatment. Regarding the macroscopic assessment, the values obtained by the TRT group were very close to those of normal cartilage and superior to those obtained by the CT group at 9 months. Conclusion: This new bioregenerative treatment modality can regenerate hyaline articular cartilage. High functional outcomes have been reported, together with a good quality repair tissue in sheep. Therefore, PACI treatment might be a good therapeutic option for full-thickness chondral lesions.

2.
ISME J ; 17(4): 611-619, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36732614

RESUMEN

Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using both 18O-H2O and 13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied Gaussian mixture models to organisms' joint 18O-13C signatures and found that across experimental replicates, few taxa could consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our results demonstrate the difficulty in generalizing bacterial life history strategies to broad lineages, and even to single organisms across a range of soils and experimental conditions. We conclude that there is a continued need for the direct measurement of microbial communities in soil to advance ecologically realistic frameworks.


Asunto(s)
Rasgos de la Historia de Vida , Suelo , Ecosistema , Microbiología del Suelo , Bacterias
3.
Ecol Appl ; 28(6): 1594-1605, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29989265

RESUMEN

Heat waves are increasing in frequency and intensity, presenting a challenge for the already difficult practice of ecological restoration. We investigated whether pre-heating locally sourced rhizosphere soil (inoculum) could acclimatize plants to a field-imposed heat wave in a restoration setting. Soil heating in the laboratory caused a marked shift in rhizosphere bacterial community composition, accompanied by an increase in species evenness. Furthermore, pre-heated rhizosphere soil reduced plant height, number of leaves, and shoot mass of the C4 grass, blue grama (Bouteloua gracilis), and it reduced the shoot mass of the C3 grass, Arizona fescue (Festuca arizonica) in the glasshouse. Following transplantation and the application of a field heat wave, pre-heated inoculum did not influence heat wave survival for either plant species. However, there were strong species-level responses to the field heat wave. For instance, heat wave survivorship was over four times higher in blue grama (92%) than in Arizona fescue (22%). These results suggest that the use of C4 seeds may be preferable for sites exhibiting high heat wave risk. Further research is needed to understand whether inocula are more effective in highly degraded soil in comparison with partially degraded soils.


Asunto(s)
Festuca/microbiología , Calor , Microbiota , Adaptación Biológica , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...